

1 The Effectiveness of Esketamine on Depression Alleviation

2 Based on Mixed Model for Repeated Measures

3 Hao Zheng[†], Jiahui Qiu[†], Yu Lu[†], Instructor: Mu He

4 Contributing authors: Hao.Zheng23@student.xjtu.edu.cn;
5 Jiahui.Qiu23@student.xjtu.edu.cn; Yu.Lu23@student.xjtu.edu.cn; Mu.He@xjtu.edu.cn;
6 [†]These authors contributed equally to this work.

7 **Abstract**

8 **Background:** Depression represents a significant global health burden, prompting increased research into
9 novel therapeutic interventions. Esketamine has emerged as a promising treatment for patients with treatment-
10 resistant depression.

11 **Objective:** This study evaluates the efficacy of Esketamine at two different dosages (56 mg and 84 mg)
12 compared to placebo in patients with major depressive disorder.

13 **Methods:** In this randomized controlled trial, patients were allocated in a 1:1:2 ratio to Esketamine 56 mg,
14 Esketamine 84 mg, or placebo groups. Treatment outcomes were assessed using Mixed Models for Repeated
15 Measures (MMRM) with an unstructured covariance matrix to account for longitudinal measurements.

16 **Results:** Statistical analysis using the least squares means estimation (from the emmeans package in R)
17 revealed significant differences in depression severity scores between both Esketamine dosage groups and
18 placebo. Both 56 mg and 84 mg Esketamine demonstrated clinically meaningful improvement in depressive
19 symptoms compared to placebo across assessment timepoints.

20 **Conclusion:** Esketamine represents an effective pharmacological intervention for depression, with both
21 studied dosages showing superior efficacy compared to placebo. These findings support Esketamine as a
22 valuable addition to the therapeutic arsenal for patients suffering from depression.

23 **Keywords:** Depression; Esketamine; MMRM; Emmeans

24 **1 Introduction**

25 Depression has become a significant global health concern, especially in recent years. As highlighted by
26 the World Health Organization (WHO), there are approximately 280 million people worldwide who suffer
27 from depression (Namiot, 2024). It is one of the leading causes of disability worldwide, affecting millions of
28 individuals across different age groups, genders, and socioeconomic backgrounds. The increasing prevalence of
29 depression has drawn urgent attention from researchers, clinicians, and policymakers due to its profound impact
30 on individuals' quality of life, productivity, and overall well-being. As a major psychological health issue,

31 depression poses a serious threat to human health and has far-reaching social and economic consequences.
32 Addressing this challenge requires effective therapeutic interventions and robust clinical evidence to guide
33 treatment strategies.

34 In response to the growing burden of depression, numerous clinical trials have been conducted to explore
35 innovative treatments. Among these, Esketamine, a derivative of ketamine, has emerged as a promising thera-
36 peutic option for treatment-resistant depression (Salahudeen, 2020). Esketamine has been shown to act rapidly
37 on the glutamatergic system, offering a novel mechanism of action compared to traditional antidepressants
38 that primarily target monoaminergic pathways. This rapid action is attributed to its ability to modulate synap-
39 tic plasticity and neurotransmission in the brain, as elucidated by Duman et al. (2016) (Duman, R. S., et al.,
40 2016). Clinical studies have demonstrated its potential to reduce depressive symptoms in patients who have not
41 responded adequately to conventional therapies. However, further research is needed to evaluate its efficacy
42 across different dosages and patient subgroups.

43 This study utilizes the Mixed Model for Repeated Measures (MMRM) to analyze the effectiveness of
44 Esketamine in alleviating depression, leveraging its advantages over traditional linear regression models.
45 Unlike linear regression, which assumes independence of observations, the MMRM model accounts for the
46 correlation between repeated measurements within the same subject over time, making it particularly suitable
47 for longitudinal clinical trial data with outcomes measured across multiple time points. Using clinical trial
48 data provided by Tigermed, the study evaluates the impact of two dosages of Esketamine (56 mg and 84
49 mg) on Montgomery–Åsberg Depression Rating Scale (MADRS) scores, a widely recognized measure of
50 depression severity. The randomized, double-blind, placebo-controlled trial assigned participants to one of
51 three groups—Esketamine 56 mg, Esketamine 84 mg, or placebo—in a 1:1:2 ratio. Through the application
52 of the MMRM model and the estimated marginal means (EMMeans) method, the study compares treatment
53 effects between the placebo group and the two Esketamine groups to provide robust insights into its therapeutic
54 efficacy. Furthermore, this study explores the robustness of Esketamine’s therapeutic effects through subgroup
55 analyses and sensitivity analyses. Specifically, we examine its efficacy across different age groups (19–60 years
56 and >60 years) and among patients with moderate and severe depression. The results indicate that Esketamine
57 demonstrates consistent effectiveness across these subgroups, suggesting its potential as a versatile treatment
58 option for diverse patient populations.

59 The remainder of this paper is organized as follows. Section 2 introduces the data source and outlines the
60 criteria for participant inclusion in the study. Section 3 presents the structure of the MMRM model, details
61 of the EMMeans analysis, and the methodological framework employed in this study. Section 3 provides the
62 main results, followed by an extensive discussion in Section 5. Finally, Section 6 concludes the paper with a
63 summary of findings and implications for future research.

64 Main results are presented in Section 4 followed by an extensive discussion. We conclude this paper in
65 Section 6.

66 **2 Data**

67 This study used the consistent and well-processed data provided by Tigermed enrolled 474 participants
68 from the United States who voluntarily participated.

69 **Inclusion criteria.**

70 Adults aged 18 years or older who experienced first onset of depressive symptoms before age 55
71 Met the DSM-5 diagnostic criteria for either: Single-episode Major Depressive Disorder (MDD) with a
72 minimum episode duration of ≥ 2 years, or Recurrent MDD without psychotic features
73 Demonstrated treatment resistance, defined as nonresponse ($\leq 25\%$ improvement) to ≥ 2 oral antidepressant
74 treatments during the current depressive episode

75 Scored ≥ 34 on the Inventory of Depressive Symptomatology–Clinician Rated (*IDS – C₃₀*) total score
76 Were medically stable as determined by physical examination

77 **Exclusion criteria.**

78 Participants were excluded from the study if they met any of the following criteria: prior use of ketamine
79 or Esketamine (lifetime); previous nonresponse to an adequate course of electroconvulsive therapy (ECT) in
80 the current major depressive episode, defined as at least 7 treatments with unilateral or bilateral ECT; receipt
81 of vagal nerve stimulation (VNS) or deep brain stimulation (DBS) in the current depressive episode; current
82 or prior DSM-5 diagnosis of a psychotic disorder or Major Depressive Disorder with psychotic features,
83 bipolar or related disorders (confirmed by the Mini-International Neuropsychiatric Interview [MINI]), current
84 obsessive-compulsive disorder, intellectual disability (DSM-5 diagnostic codes 317, 318.0, 318.1, 318.2,
85 315.8, and 319), autism spectrum disorder, or personality disorders including borderline, antisocial, histrionic,
86 or narcissistic types.

87 **Data Selection and Variables.**

88 In selecting the clinical data records for participants, we exclusively utilized data from the double-blind
89 phase (primarily covering days 0-28). For the critical Montgomery-Åsberg Depression Rating Scale (MADRS)
90 assessments, we specifically selected the Derived MADRS Total Score(i.e: MADA0212 score) while for
91 temporal variables, we utilized only the Numeric representation of analysis visit (AVISITN). The key variables
92 in this study were factors for treatment (TRT01A) and specific days within the double-blind phase (AVISITN),
93 as well as their interaction effects. The primary efficacy variable was the MADR0212 score (AVAL), with
94 higher scores indicating greater severity of depressive symptoms. Consequently, a greater reduction in scores
95 represents superior therapeutic efficacy. Additional covariates included age (AGE), study center (SITEID),
96 MADRS baseline score (BASE), and race (RACE).

97 3 Methodology

98 3.1 Flow Chart

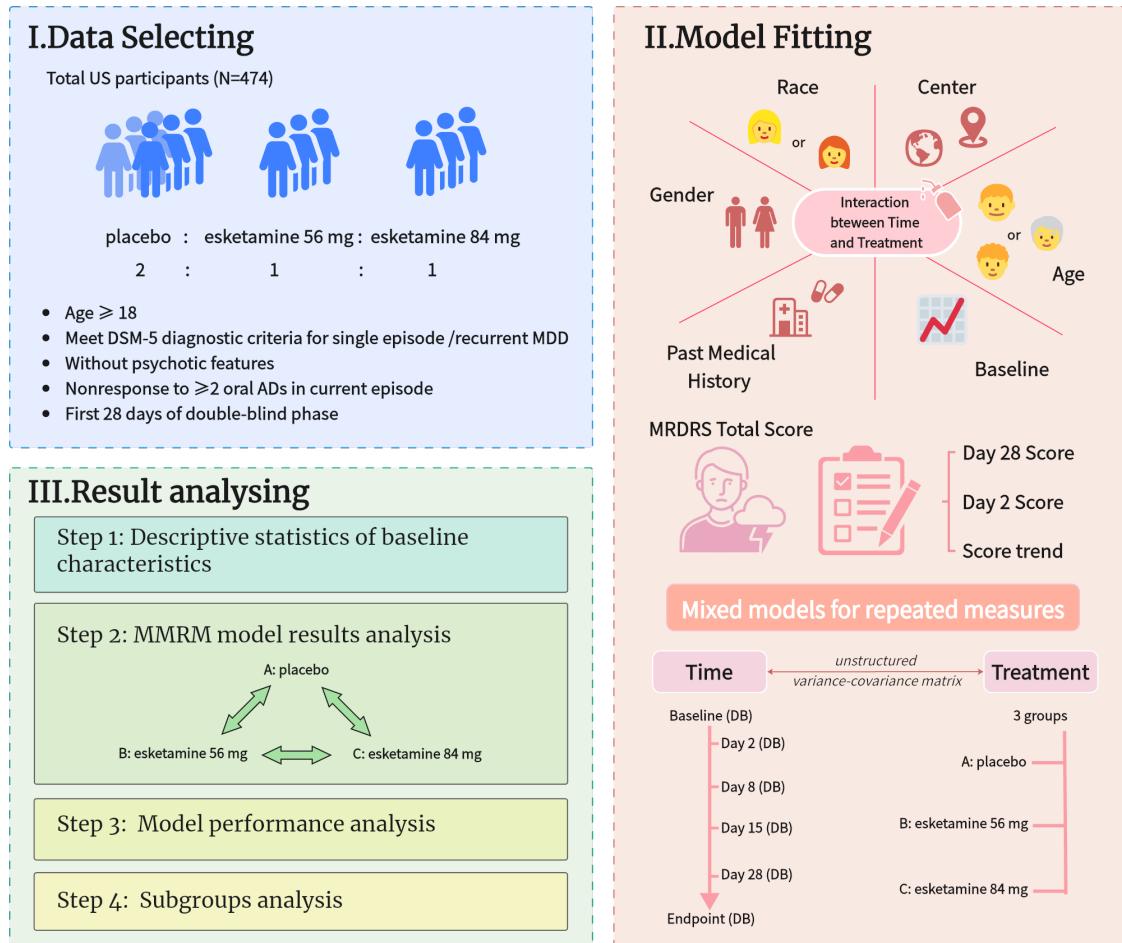


Fig. 1: Work Flow Chart

99 3.2 Model Structure

100 The Mixed Model for Repeated Measures (MMRM) proposed by Sabanes (2025) is a statistical model
 101 designed to analyze longitudinal sequential results, particularly in randomized clinical trials and other scenarios
 102 requiring the processing of repeated measurements. This model extends the basic linear mixed-effects model
 103 introduced by Laird and Ware (1982).

104 3.2.1 The Basic Linear Mixed-Effects Model

105 Firstly, we discuss the basic linear mixed-effects model:

106
$$y_i = X_i\beta + Z_i b_i + \epsilon_i, \quad i = 1, \dots, M \quad (1)$$

107 where

- 108 • y_i is the n_i -dimensional response vector for the i th subject.
- 109 • β is the p -dimensional vector of fixed effects, which are the parameters of interest to the researchers.
- 110 • b_i is the q -dimensional vector of random patient-specific effects.
- 111 • X_i (of size $n_i \times p$) and Z_i (of size $n_i \times q$) are known regressor matrices relating observations to the
- 112 fixed-effects and random-effects, respectively.
- 113 • ϵ_i is the n_i -dimensional within-subject error.

114 This model assumes that:

- 115 • b_i and ϵ_i follow a normal distribution with a mean of 0, and variance-covariance matrices are Ψ and $\sigma^2 I$,
- 116 respectively.
- 117 • $b_i \sim \mathcal{N}(0, \Psi)$ and $\epsilon_i \sim \mathcal{N}(0, \sigma^2 I)$.
- 118 • b_i and ϵ_i are independent for different subjects and independent of each other for the same subject.

119 **3.2.2 Mixed Model for Repeated Measures (MMRM)**

120 Now we assume that Ψ and σ^2 are different for different individuals, i.e.,

121
$$\epsilon_i \sim \mathcal{N}(0, \Lambda_i), \quad i = 1, \dots, M. \quad (2)$$

122 where the Λ_i are positive-definite matrices parameterized by a fixed, generally small set of parameters λ .

123 Similarly, b_i and ϵ_i are independent for different subjects and independent of each other for the same subject.

124 The variance-covariance matrix of the response vector y_i ,

125
$$\text{Var}(y_i) = \Sigma_i = (Z_i \Psi Z_i^T + \Lambda_i) \quad (3)$$

126 comprises a random-effects component, given by $Z_i \Psi Z_i^T$, and a within-subject component, given by Λ_i .

127 The MMRM is a special case of the previous equation. In a clinical trial setting, one often chooses to directly

128 model the variance-covariance structure of the response, i.e., to account for within-subject dependencies using

129 the within-group component Λ_i , and can omit the random effects component ($Z_i b_i$). Hence, in this case,

130

$$\text{Var}(y_i) = \Sigma_i = \Lambda_i \quad (4)$$

131

Now we get the MMRM:

132

$$y_i = X_i\beta + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \Sigma_i), \quad i = 1, \dots, M. \quad (5)$$

133

The Σ_i matrices are obtained by subsetting the overall variance-covariance matrix $\Sigma \in \mathbb{R}^{m \times m}$, where m is the total number of scheduled visits per subject, appropriately by

135

$$\Sigma_i = S_i^\top \Sigma S_i \quad (6)$$

136

where $S_i \in \{0, 1\}^{m \times m_i}$ is the subject-specific “subsetting matrix” that indicates the visits with available observations.

138

In our application:

139

- β is a vector of treatments (dummy A, B, C), time (Day 0, 2, 8, 15, 22, 28, Endpoint), the interaction of treatments and time, SITEID, RACE, and AGE.
- X_i is a designed matrix (474*6) related to fixed effect β .
- y_i is AVAL for each subject (USUBJID) at each AVISITN.
- ϵ_i is an unstructured covariance matrix.

144

3.2.3 Model Advantage

145

The Mixed Model for Repeated Measures (MMRM) is a powerful statistical tool particularly well-suited for analyzing longitudinal data, which involves multiple measurements taken on the same subjects over time. By accounting for within-subject correlations, MMRM effectively handles repeated measurements and produces more accurate analytical results. It can also make full use of all available data, performing likelihood-based estimation to conduct valid inference even when some observations are missing. By incorporating random effects, MMRM captures the variability among individuals and enhances the flexibility of the model. Moreover, it supports a variety of covariance structures, such as unstructured and autoregressive, allowing for flexible modeling of within-subject correlations. Through proper modeling, MMRM can provide more accurate parameter estimates and statistical inferences. Widely applied in clinical trials and longitudinal

154 studies, MMRM can effectively assess intervention effects and temporal trends. In this study, we utilized the
155 MMRM model to analyze the longitudinal data of AVAL for the same USUBJID, taking into account repeated
156 measurements, individual differences, and flexible covariance structures, thereby providing strong statistical
157 support for our research questions.

158 **3.2.4 Emeans**

159 This study employed estimated marginal means (emmeans) to calculate adjusted means from the Mixed
160 Model Repeated Measures (MMRM) analysis. The core objective of the emmeans algorithm is to provide
161 more accurate between-group comparisons by adjusting for covariates or balancing the effects of experimental
162 design. Marginal means, also known as least-squares means, are group means estimated through statistical
163 modeling that adjust for the influence of other variables. The calculation process involves first constructing
164 a reference grid, where factors and covariates in the model are fixed at specific values (covariates set to
165 sample means, factors at all levels). Predicted means are then calculated based on model coefficients for each
166 factor level under the reference grid conditions. Finally, averaging procedures are applied to eliminate the
167 interference of covariates in between-group comparisons.

168 The emmeans approach offers advantages in flexibility, interpretability, and extensibility by constructing
169 reference grids and model predictions for comparing group means while adjusting for covariates. Given
170 the multiple covariates involved in this study, the emmeans algorithm was necessary to eliminate covariate
171 interference before performing between-group comparisons. Additionally, since treatment groups and time
172 points showed interaction effects in this study, emmeans helped estimate means for different groups at various
173 time points, demonstrating the efficacy trends of Esketamine nasal spray.

174 The study specified the interaction between treatment group (TRT01A) and visit number (AVISITN) as the
175 factors of interest for comparison. Due to the predominance of white participants in the study population and
176 the relatively small numbers of participants from other racial groups (limiting representativeness and research
177 significance), race (RACE) was set as an irrelevant variable. In the actual analysis, the model calculated
178 estimated marginal means using the emmeans function and adjusted for confounding effects of baseline scores,
179 visit time, study center (SITEID), and baseline symptoms (BaseSituation). The p-values for data comparisons
180 underwent Dunnett's test twice to ensure statistical significance and control for Type I error in multiple
181 comparisons.

182 **4 Results**

183 **4.1 Descriptive Statistics Analysis**

184 In our analysis, we categorized patients into two groups based on their MADRS scores: those with scores
185 less than 40, indicating middle-level depression, and those with scores of 40 or higher, indicating serious-
186 level depression. The table provides a detailed breakdown of various demographic and clinical characteristics
187 across these groups.

188 The average age of the total sample was 45.2 years, with those in the middle-level depression group slightly
189 younger at 45.5 years compared to 44.4 years in the serious-level depression group. This difference was
190 statistically significant ($p=0.045$). The majority of patients in both groups were female, with a higher proportion
191 in the middle-level depression group (58.2%) compared to the serious-level depression group (64.0%). This
192 difference was also statistically significant ($p=0.006$). The largest racial group in both categories was White,
193 with 86.0% in the middle-level depression group and 85.3% in the serious-level depression group. Other
194 racial categories showed no significant differences between the groups. TRT01A: There was no significant
195 difference in the distribution of treatment types (Dummy A, B, and C) between the two groups ($p=0.429$). The
196 distribution of baseline severity groups (Group1 to Group5) showed significant differences between the two
197 depression levels. Group1, which represents the least severe depression, was more prevalent in the middle-
198 level depression group (19.2%) compared to the serious-level depression group (22.8%). Conversely, Group5,
199 representing the most severe depression, was more common in the serious-level depression group (14.9%)
200 compared to the middle-level depression group (21.4%) ($p<0.001$).

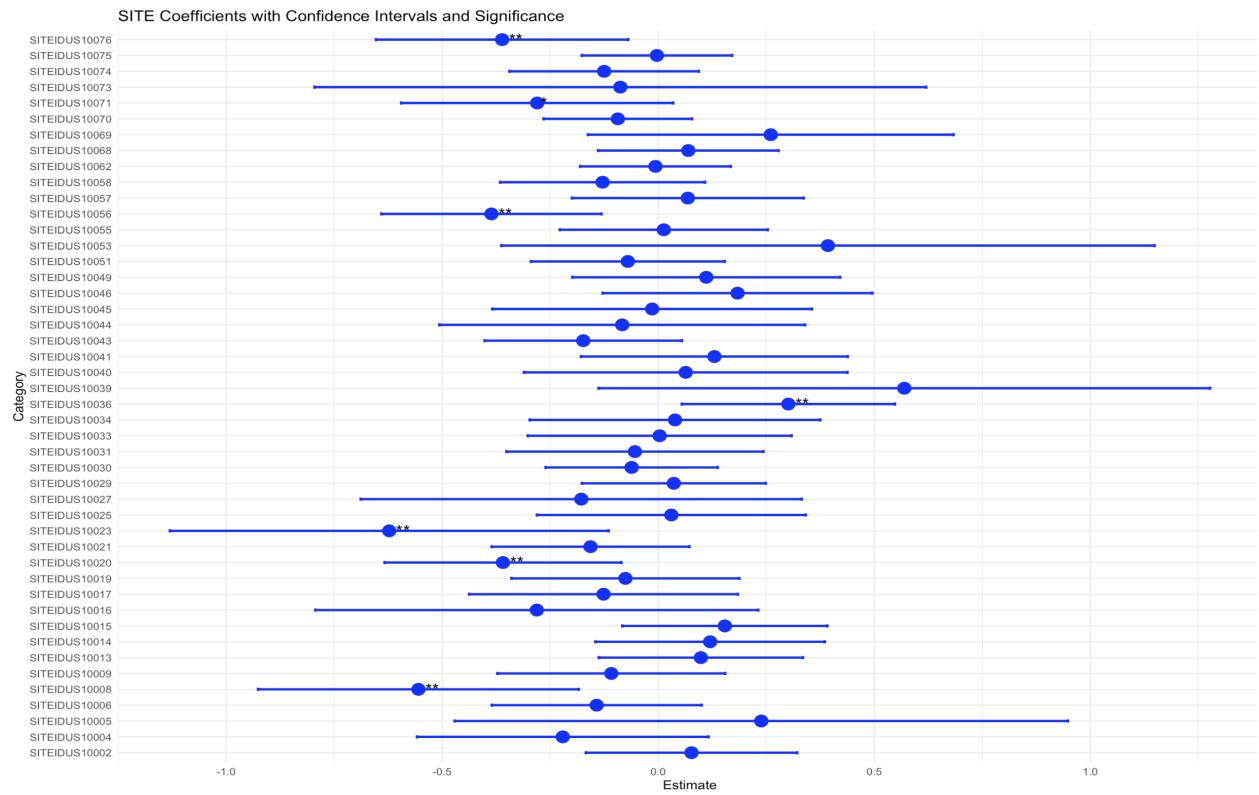
201 This analysis provides a comprehensive overview of the baseline characteristics of patients with varying
202 levels of depression as indicated by table 1, highlighting significant differences in age, sex, and baseline
203 severity distribution between middle-level and serious-level depression groups. The specific information of 3
204 treatments situation in different sites are shown in the figures [A1](#) , [A2](#) and [A3](#).

205 **4.2 Model Results**

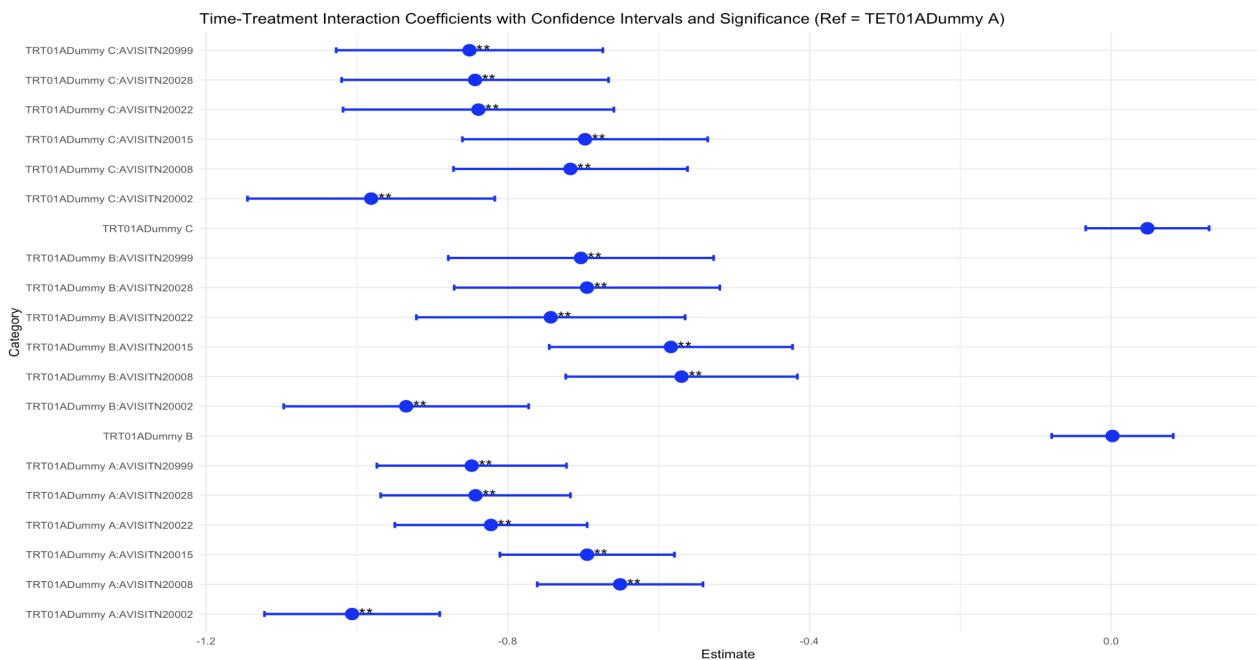
206 **4.2.1 MMRM Result**

207 The results presented are derived from a MMRM that examines depression scores (AVAL) across multiple
208 time points (AVISITN). The model includes the following factors: treatment effects (TRT01A, with three

	[ALL] N=3241	MADRS SCORE < 40 N=2525	MADRS SCORE \geq 40 N=716	p.overall
AGE	45.2 (14.0)	45.5 (14.5)	44.4 (12.3)	0.045
SEX:				0.006
F	1928 (59.5%)	1470 (58.2%)	458 (64.0%)	
M	1313 (40.5%)	1055 (41.8%)	258 (36.0%)	
RACE:				
WHITE	2788 (86.0%)	2177 (86.2%)	611 (85.3%)	
AMERICAN INDIAN OR ALASKA NATIVE	6 (0.19%)	6 (0.24%)	0 (0.00%)	
ASIAN	97 (2.99%)	83 (3.29%)	14 (1.96%)	
BLACK OR AFRICAN AMERICAN	241 (7.44%)	185 (7.33%)	56 (7.82%)	
MULTIPLE	60 (1.85%)	46 (1.82%)	14 (1.96%)	
NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER	14 (0.43%)	7 (0.28%)	7 (0.98%)	
NOT REPORTED	28 (0.86%)	21 (0.83%)	7 (0.98%)	
UNKNOWN	7 (0.22%)	0 (0.00%)	7 (0.98%)	
TRT01A:				0.429
Dummy A	1610 (49.7%)	1252 (49.6%)	358 (50.0%)	
Dummy B	819 (25.3%)	650 (25.7%)	169 (23.6%)	
Dummy C	812 (25.1%)	623 (24.7%)	189 (26.4%)	
BASE	35.4 (6.36)	33.1 (5.09)	43.6 (2.26)	0.000
AVAL	27.9 (11.1)	26.0 (10.0)	34.5 (12.1)	<0.001
SITEID_group:				<0.001
Group1	649 (20.0%)	486 (19.2%)	163 (22.8%)	
Group2	649 (20.0%)	516 (20.4%)	133 (18.6%)	
Group3	647 (20.0%)	430 (17.0%)	217 (30.3%)	
Group4	648 (20.0%)	552 (21.9%)	96 (13.4%)	
Group5	648 (20.0%)	541 (21.4%)	107 (14.9%)	


Table 1: Descriptive statistics by MADRS score groups (categorical variables are presented using the number (percentage); numerical variables are presented using the average (standard deviation). Difference comparison between two level MADRS SCORE (< 40 or \geq 40) are conducted using t-test or ANOVA

209 treatment options: placebo, Esketamine 56 mg, and Esketamine 84 mg), site effects (SITEID), demographic
 210 factors (RACE and AGE), baseline depression severity (BaseSituation), and an unstructured covariance matrix
 211 to account for within-subject correlations across visits for patients with depression.


212 Model Formula:

213 $AVAL \sim AVISITN:TRT01A + TRT01A + SITEID + RACE + AGE + BaseSituation + us(AVISITN |$
 214 $USUBJID)$

215 The analysis included 3,214 observations from 476 subjects across a maximum of 7 time points (from
 216 baseline to endpoint). The model utilized the Satterthwaite method for degrees of freedom and REML for
 217 inference, with asymptotic variance-covariance estimation.

Fig. 2: 95 % Confidence Interval for the coefficients of Different Sites

Fig. 3: 95 % Confidence Interval for the coefficients of Time-Treatment Interaction

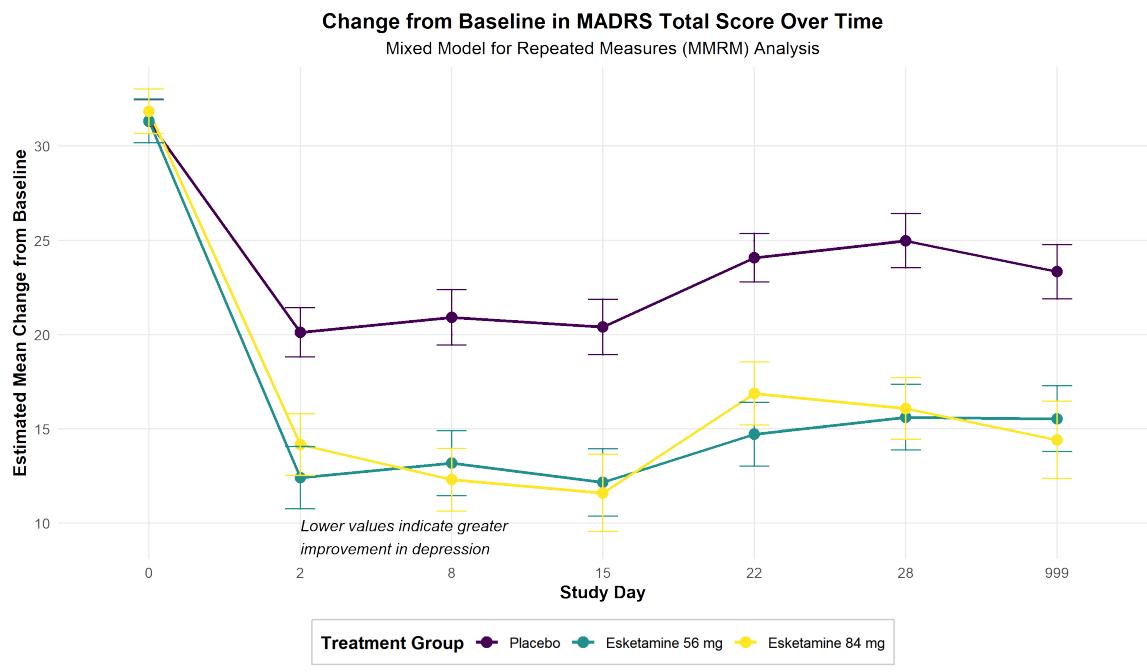
218 The model assessed three treatments (placebo as reference, 56 mg Esketamine, and 84 mg Esketamine).

219 The main effect parameters for treatments B and C (0.002 and 0.048, respectively) were not statistically

Table 2: Unstructured Covariance Estimates

	0	2	8	15	22	28	999
0	0.1287	0.0874	0.0944	0.0802	0.0866	0.0829	0.0830
2	0.0874	0.8628	0.5757	0.5341	0.5563	0.5582	0.5632
8	0.0944	0.5757	0.7903	0.6412	0.6584	0.6251	0.6278
15	0.0802	0.5341	0.6412	0.8388	0.7806	0.7324	0.7313
22	0.0866	0.5563	0.6584	0.7806	1.0243	0.8904	0.8913
28	0.0829	0.5582	0.6251	0.7324	0.8904	1.0050	1.0005
999	0.0830	0.5632	0.6278	0.7313	0.8913	1.0005	1.0039

220 significant (p=0.967 and p=0.251, respectively), suggesting no overall difference in depression scores between
 221 treatments when controlling for other factors. However, the treatment-by-visit interactions revealed important
 222 temporal patterns in treatment effects since all treatments showed significant improvement over time (negative
 223 coefficients for visit interactions) as indicated by figure 3. For example, at the second visit day, all treatments
 224 showed substantial and significant reductions in depression scores (all p<0.001). Besides, treatment B appeared
 225 to have slightly smaller reductions compared to treatments A and C across most visits. By visits 20028 and
 226 20999 (final assessment), the depression score reductions were -0.84 points (p<0.001), -0.70 points (p<0.001)
 227 and -0.85 points (p<0.001) respectively. This pattern suggests that treatments A and C may have slightly more
 228 sustained effects than treatment B, though all treatments demonstrated substantial and statistically significant
 229 improvement over time. Besides, different sites have shown different patterns in their confident intervals as
 230 shown on figure 2.


231 **4.2.2 Emeans Evaluation**

232 This study employed Mixed-Model Repeated Measures (MMRM) analysis to evaluate the efficacy of
 233 Esketamine nasal spray monotherapy in adults with treatment-resistant depression, with the primary endpoint
 234 being the change in MADRS total score from baseline to day 28 (table 3). Results demonstrated that both
 235 doses of Esketamine (56 mg and 84 mg) were significantly superior to placebo, with efficacy that was both
 236 statistically significant and clinically meaningful.

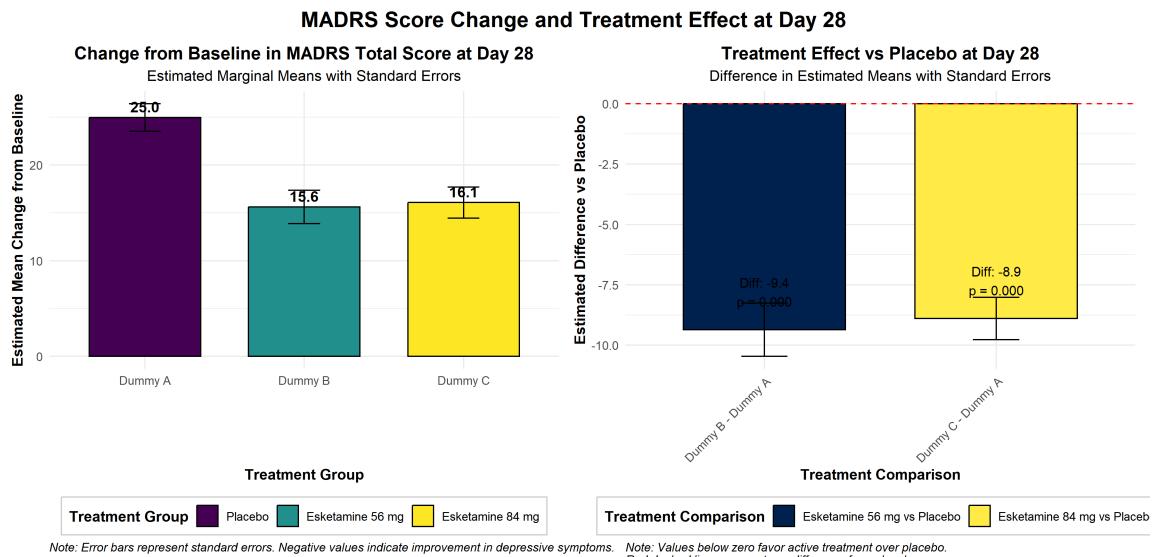
Table 3: Depression Scores by Treatment Group at Visit
28

TRT01A	emmean	SE	df	lower.CL	upper.CL
Dummy A	25.0	1.43	800	22.2	27.8
Dummy B	15.6	1.75	1000	12.2	19.0
Dummy C	16.1	1.63	981	12.9	19.3

237 The study assessed the impact of Esketamine nasal spray on MADRS total scores of treatment-resistant
 238 depression patients across different time points from baseline to endpoint (as shown in Figure 4). Results

Fig. 4: MADRS Change Over Time

239 indicated that the Esketamine treatment groups (56 mg and 84 mg) exhibited rapid symptom improvement
 240 early in the treatment course, with efficacy sustained through the study endpoint, significantly outperforming
 241 the placebo group (Figure 4).


242 In the analysis, data showed no significant differences in baseline MADRS scores among the three groups
 243 (Dummy A: 31.31, Dummy B: 31.33, Dummy C: 31.84, $p > 0.05$), indicating good baseline balancing.

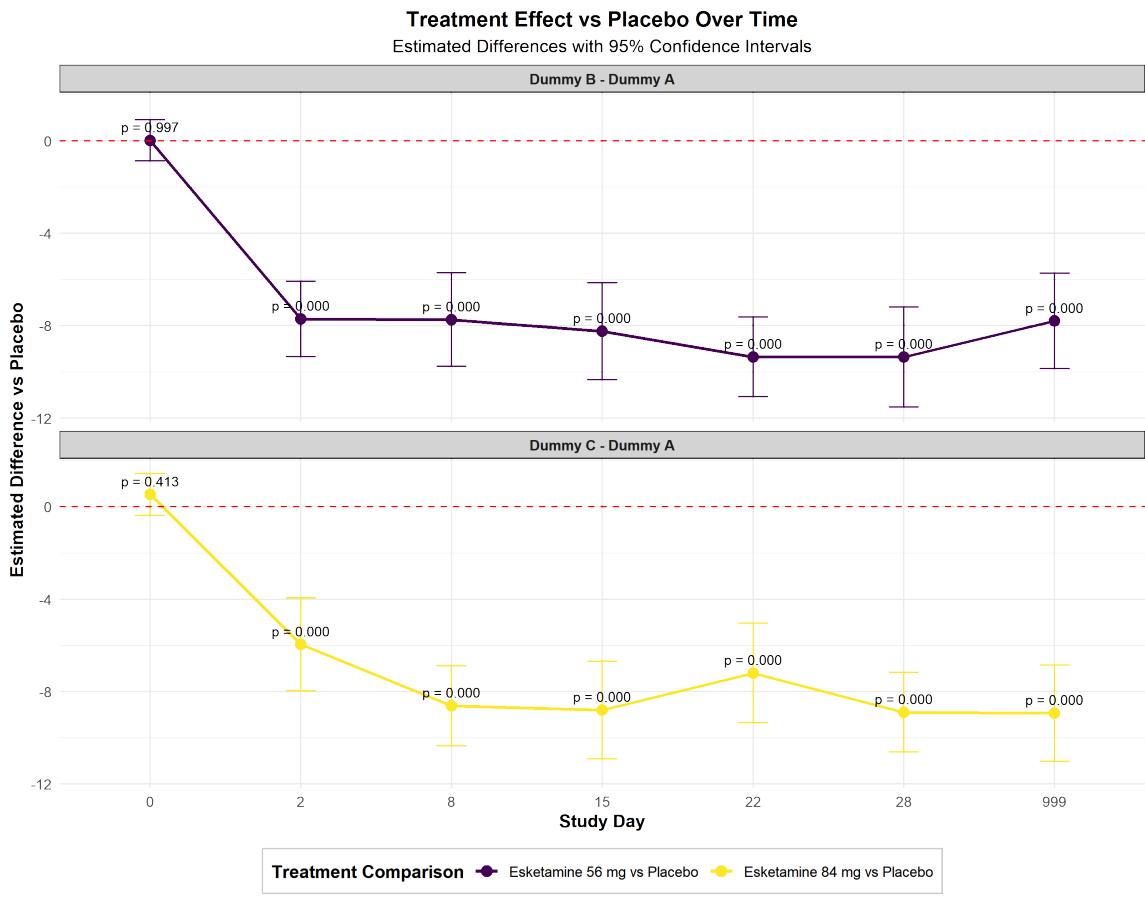
244 By day 2, the Esketamine groups showed significant score reductions, with the 56 mg group (Dummy B)
 245 reaching a mean of 12.41 ($SE=1.66$, 95% CI: 9.16-15.66) and the 84 mg group (Dummy C) reaching 14.16
 246 ($SE=1.63$, 95% CI: 10.96-17.37), while the placebo group (Dummy A) only decreased to 20.12 ($SE=1.30$).

247 By day 8, efficacy was further consolidated, with means for Dummy B and C decreasing to 13.18 and
 248 12.31, respectively, significantly lower than the placebo group's 20.92 ($p < 0.0001$), suggesting rapid drug
 249 efficacy within the first week.

250 Moreover, until the endpoint of the double-blind study period, both treatment groups maintained stable
 251 efficacy (Dummy B: 15.54, Dummy C: 14.41), while the placebo group rebounded to 23.34, further supporting
 252 the long-term effectiveness of Esketamine nasal spray.

253 Notably, the 95% CIs of the Esketamine groups did not overlap with the placebo group at any time point,
 254 indicating statistically significant efficacy.

Fig. 5: MADRS change and Treatment Effect at Day 28

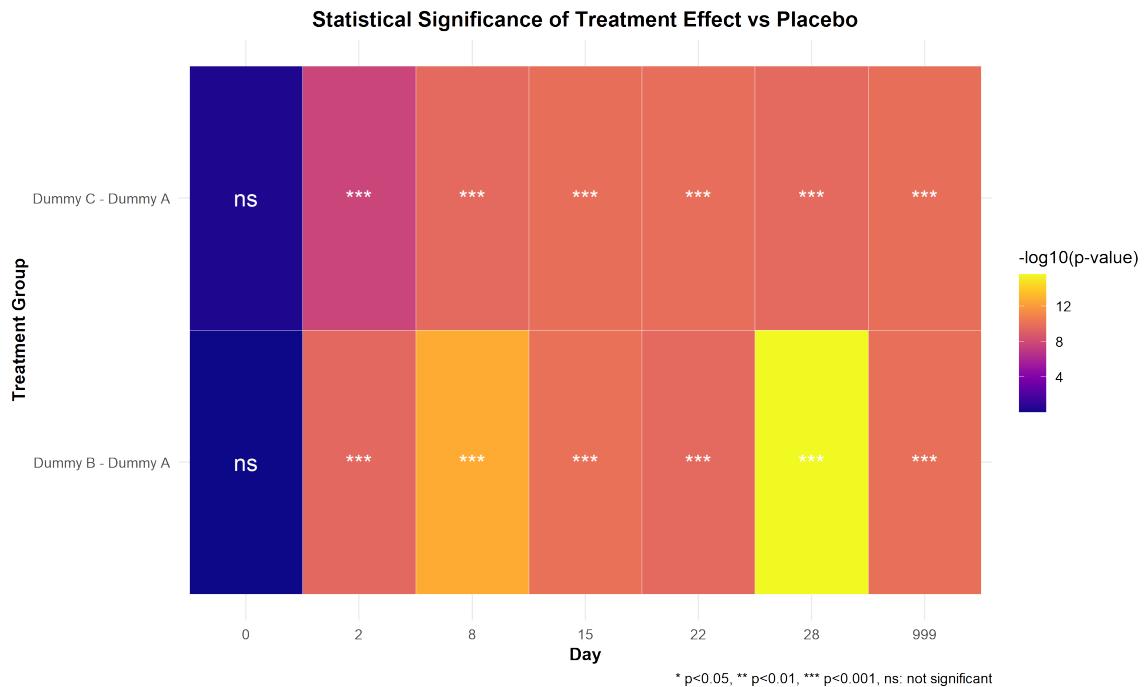

255 The placebo group (Dummy A) demonstrated an estimated marginal mean MADRS total score of 24.98
 256 (SE=1.43, 95% CI: 22.16-27.79) at day 28, indicating limited symptom improvement.

257 The Esketamine 56 mg group (Dummy B) exhibited a mean score of 15.62 (SE=1.75, 95% CI: 12.19-19.05),
 258 representing a significant reduction from baseline.

259 The Esketamine 84 mg group (Dummy C) showed a mean score of 16.08 (SE=1.63, 95% CI: 12.88-19.28),
 260 with minimal difference compared to the 56 mg group, yet still significantly superior to placebo.

261 As illustrated in above Figure 5 (left panel), the confidence intervals for MADRS total scores across all
 262 treatment groups did not overlap with the placebo group, demonstrating the robustness of the therapeutic
 263 efficacy.

264 Figure 5 (right panel) presents data on treatment effect comparisons, wherein the estimated difference
 265 in least squares means between Esketamine 56 mg and placebo was -9.36 (SE=1.10, $p < 0.0001$), while
 266 the difference between Esketamine 84 mg and placebo was -8.90 (SE=0.88, $p < 0.0001$). These differences
 267 exceed the threshold of clinical significance for MADRS score reduction (typically established at 5 points)
 268 (Hengartner et al., 2020). Furthermore, both comparisons maintained high statistical significance even after
 269 Dunnett's multiple comparison adjustment, substantiating the robust therapeutic efficacy of Esketamine.


Fig. 6: Treatment effect forest plot

270 This study also utilized forest plots to visually demonstrate the treatment effect differences between
 271 Esketamine nasal spray (56 mg and 84 mg) and placebo across various time points. The analysis employed
 272 Mixed-Model Repeated Measures (MMRM), controlling for confounding factors such as study centers
 273 (SITEID) and baseline symptoms (BaseSituation), with p-values adjusted using Dunnett's multiple compari-
 274 son method. Results indicated that both dosage groups significantly outperformed placebo at all assessment
 275 time points, with effect sizes exhibiting dynamic changes over time (Figure 6).

276 The forest plot revealed no significant differences in baseline scores between Esketamine groups and
 277 placebo (Dummy B vs A: $p=0.997$; Dummy C vs A: $p=0.413$), further confirming baseline equivalence. From
 278 day 2 through endpoint (AVISITN=2-999), all time point comparisons achieved high statistical significance
 279 ($p < 0.0001$). On day 2, Dummy B (56 mg) demonstrated an effect size of -7.71 (SE=0.83, $p < 0.0001$), while
 280 Dummy C (84 mg) showed an effect size of -5.96 (SE=1.03, $p < 0.0001$), indicating rapid early onset of action.
 281 By day 28, effect sizes remained stable, with Dummy B showing a difference of -9.36 (SE=1.10) and Dummy
 282 C showing -8.89 (SE=0.88), both significantly superior to placebo ($p < 0.0001$). At endpoint (formal cessation

283 of the double-blind study phase), effect sizes maintained stability (Dummy B: -7.80, Dummy C: -8.93, $p <$
284 0.0001), supporting long-term efficacy.

285 Moreover, after applying Dunnett's correction for the two comparisons, all p-values maintained high
286 statistical significance (adjusted $p < 0.0001$), reducing the risk of Type I error.

Fig. 7: Treatment significance heatmap

287 This study employed a heatmap to visually demonstrate the significance of treatment effects between
288 Esketamine nasal spray (56 mg and 84 mg) and placebo across different time points. The analysis utilized
289 Mixed-Model Repeated Measures (MMRM) methodology, and enhanced the visual differentiation of smaller p-
290 values through negative logarithmic transformation ($-\log_{10}(p)$), thereby quantifying the statistical significance
291 of Esketamine nasal spray efficacy. In the heatmap, darker regions correspond to higher $-\log_{10}(p)$ values (i.e.,
292 lower p-values), providing an intuitive representation of significance levels. Results depicted in the heatmap
293 similarly demonstrated that both dosage groups exhibited highly significant differences at all assessment time
294 points post-treatment (except baseline), with effect intensity dynamically changing over time (Figure 7).

295 **4.3 Model's Performance Evaluation and Comparison**

296 **Model Evaluation:**

297 This study employed diagnostic plots to verify the validity of statistical assumptions, ensuring the robust-
 298 ness of inferential conclusions. The diagnostic plots, presented in Figure 8, include residual-versus-fitted value
 299 plots and normal Q-Q plots, with the following specific analyses:

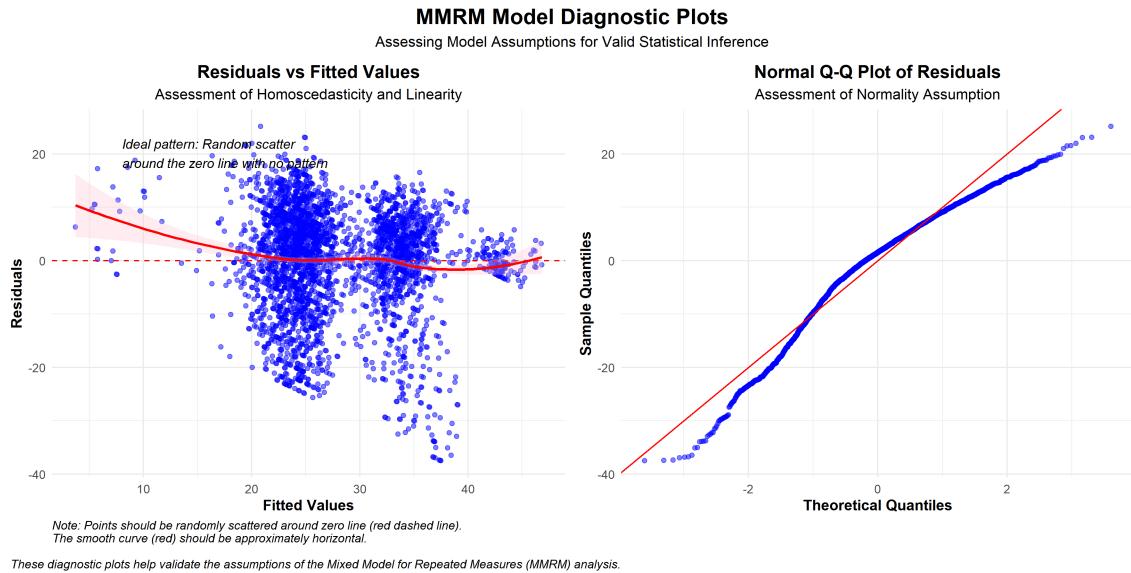


Fig. 8: Work Flow Chart

300 The residual-versus-fitted value plot (Figure 8, left panel) was utilized to examine homoscedasticity and
 301 linearity assumptions. This plot demonstrates that residuals are randomly dispersed around the zero line
 302 (red dashed line), without notable clustering or funnel-shaped trends, indicating that the data satisfy the
 303 homoscedasticity assumption. The red smoothing curve appears approximately horizontal, further supporting
 304 the constancy of residual variance and absence of evident non-linear relationships. This indicates the absence
 305 of systematic associations between fitted values and residuals, suggesting that the model adequately captures
 306 the variation in the data without omitting important predictor variables or interaction effects.

307 The normal Q-Q plot (Figure 8, right panel) was employed to assess normality assumptions. The plot
 308 shows that sample quantiles are distributed primarily along the diagonal line, with only minor deviations
 309 in the tails, indicating that residuals approximately follow a normal distribution. These slight tail deviations
 310 may be attributable to extreme values or the relatively large sample size, and do not compromise the overall
 311 robustness of the inferences. Observation confirms that the overall pattern of the Q-Q plot conforms to the
 312 normality assumption, supporting the validity of subsequent p-values and confidence intervals.

313 The random distribution of residuals, constant variance, and approximate normality collectively validate
314 the appropriateness of the MMRM model. Consequently, the statistical significance of the study results (e.g.,
315 between-treatment group differences with $p < 0.0001$) demonstrates high credibility.

316 **4.4 Subgroup Analysis**

317 This study employed the Mixed Model for Repeated Measures (MMRM) to evaluate the efficacy of
318 Esketamine (56mg and 84mg) compared to a placebo in patients with different genders, different levels
319 of depression (moderate and severe) and different age groups (18-24 years, 24-55 years, and ≥ 55 years).
320 The primary outcome measure was the total score on the Montgomery-Åsberg Depression Rating Scale
321 (MADRS), with lower scores indicating less severe depressive symptoms. The results showed that Esketamine
322 demonstrated more significant improvements in depressive symptoms across all subgroups.

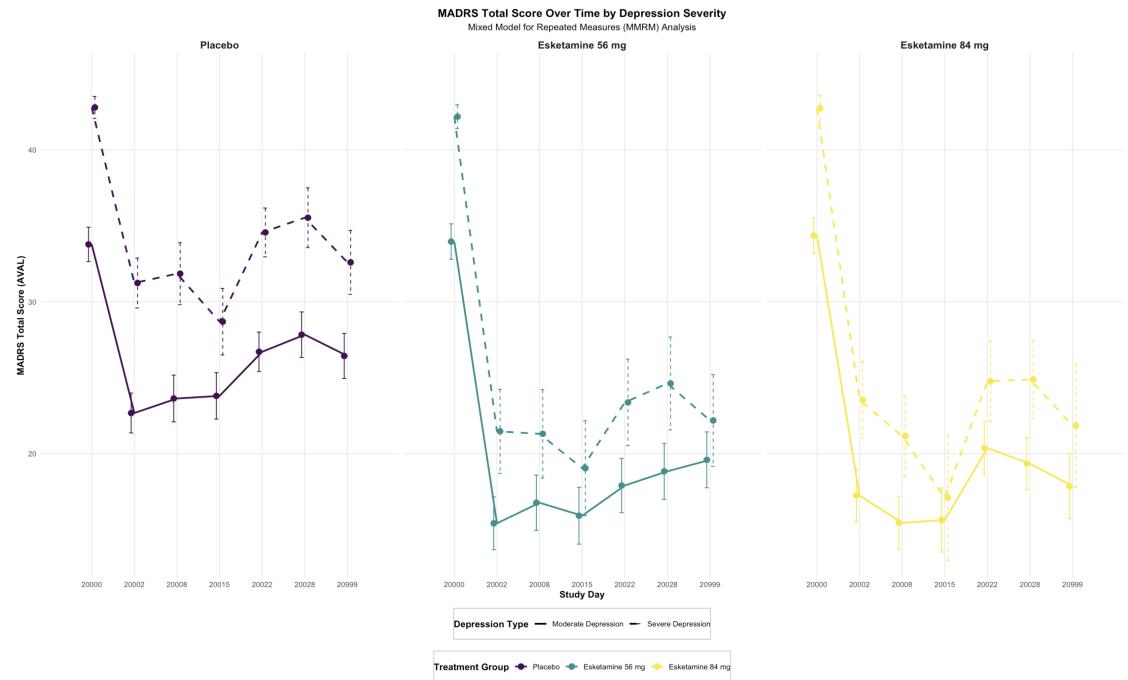
323 **4.4.1 Basis for Grouping**

324 We chose gender age and individual depression severity (moderate and severe) as the basis for subgroup
325 analysis. This decision was influenced by the findings of Cipriani et al. (2018), which suggested that age gender
326 and depression severity might affect the therapeutic response to antidepressants. For instance, the study noted
327 differences in the response to antidepressants among patients of different gender, age groups and severity
328 levels, which could reflect the heterogeneity of depression mechanisms and etiologies. Following the MADRS
329 scoring criteria by Zimmerman et al. (2004), patients were categorized into moderate depression ($AVAL <$
330 40) and severe depression ($AVAL > 60$) groups to explore the differential effects of Esketamine on patients
331 with varying severity levels. This classification is clinically significant because patients with severe depression
332 often exhibit greater treatment resistance and a higher risk of suicide. By comparing the therapeutic effects
333 of Esketamine in these two groups, we can determine whether it can compensate for the current treatment
334 deficiencies, especially for patients with treatment-resistant severe depression. Additionally, this analysis helps
335 guide clinical decision-making by identifying which patient groups are most likely to benefit from Esketamine
336 treatment.

337 **4.4.2 Statistical Methods and Error Representation**

338 In all the graphs of this study, each data point represents the estimated marginal means obtained from
339 the Mixed Model for Repeated Measures (MMRM) analysis, with vertical error bars indicating the standard

340 error (SE). The standard error reflects the precision and reliability of the estimated means; shorter error bars
 341 indicate more precise estimates. Overlapping error bars usually suggest that the differences between groups are
 342 statistically insignificant, but definitive statistical significance should be confirmed through formal hypothesis
 343 testing. When interpreting treatment effects, we not only considered the trend of point estimates but also
 344 integrated the uncertainty information provided by the error bars to ensure the statistical robustness of our
 345 conclusions.


346 4.4.3 Sex

347 After including the confounding variable sex in our model, the result did not show big difference as table
 348 [A1](#) [A2](#), as indicated by [4](#). Besides, the model selection criterias AIC (3856.3) and BIC (3972.9) are both
 349 higher than the model in the [4.2.1](#) (AIC = 3852.3 ; BIC =3969.0). This means the sex did not show great
 350 difference in the effectiveness of the drug.

Table 4: Sex difference result using MMRM

Variable	Coefficient	95% CI	p-value
(Intercept)	1.801	(1.065, 2.538)	< 0.001
TRT01ADummy B	0.002	(-0.079, 0.082)	0.96678
TRT01ADummy C	0.049	(-0.032, 0.131)	0.23741
SEXM	-0.035	(-0.105, 0.035)	0.33304
base_situation10-19	-2.334	(-2.702, -1.965)	< 0.001
base_situation20-39	-0.853	(-0.933, -0.772)	< 0.001
TRT01ADummy A:AVISITN2	-1.006	(-1.122, -0.89)	< 0.001
TRT01ADummy B:AVISITN2	-0.935	(-1.097, -0.772)	< 0.001
TRT01ADummy C:AVISITN2	-0.981	(-1.145, -0.817)	< 0.001
TRT01ADummy A:AVISITN8	-0.651	(-0.761, -0.541)	< 0.001
TRT01ADummy B:AVISITN8	-0.57	(-0.723, -0.416)	< 0.001
TRT01ADummy C:AVISITN8	-0.717	(-0.872, -0.561)	< 0.001
TRT01ADummy A:AVISITN15	-0.695	(-0.81, -0.579)	< 0.001
TRT01ADummy B:AVISITN15	-0.584	(-0.745, -0.422)	< 0.001
TRT01ADummy C:AVISITN15	-0.697	(-0.86, -0.535)	< 0.001
TRT01ADummy A:AVISITN22	-0.822	(-0.95, -0.695)	< 0.001
TRT01ADummy B:AVISITN22	-0.743	(-0.921, -0.565)	< 0.001
TRT01ADummy C:AVISITN22	-0.839	(-1.018, -0.659)	< 0.001
TRT01ADummy A:AVISITN28	-0.843	(-0.968, -0.717)	< 0.001
TRT01ADummy B:AVISITN28	-0.695	(-0.871, -0.519)	< 0.001
TRT01ADummy C:AVISITN28	-0.843	(-1.02, -0.666)	< 0.001
TRT01ADummy A:AVISITN99	-0.848	(-0.973, -0.722)	< 0.001
TRT01ADummy B:AVISITN99	-0.703	(-0.879, -0.527)	< 0.001
TRT01ADummy C:AVISITN99	-0.85	(-1.027, -0.674)	< 0.001

351 **4.4.4 Depression Degree**

352 **Fig. 9**

352 Our study demonstrated that Esketamine showed significant therapeutic effects in patients with different
 353 levels of depression. In the placebo group, patients with moderate depression experienced a reduction in
 354 MADRS scores from approximately 33 at baseline to about 22, while those with severe depression saw scores
 355 decrease from about 44 to around 28. Despite the larger improvement in severe depression patients, their final
 356 scores remained higher than those with moderate depression. In contrast, the Esketamine treatment group
 357 exhibited more pronounced therapeutic effects. Among patients receiving 56mg of Esketamine, those with
 358 moderate depression saw scores drop from approximately 15 to about 19, and those with severe depression from
 359 about 19 to around 15. Similarly, the 84mg dose group showed comparable results, with moderate depression
 360 patients experiencing a reduction from approximately 15 to about 19, and severe depression patients from
 361 about 21 to around 15. It is noteworthy that both doses of Esketamine led patients to achieve similar final
 362 scores, indicating that Esketamine may have greater clinical significance for patients with severe depression.

363 **4.4.5 Age**

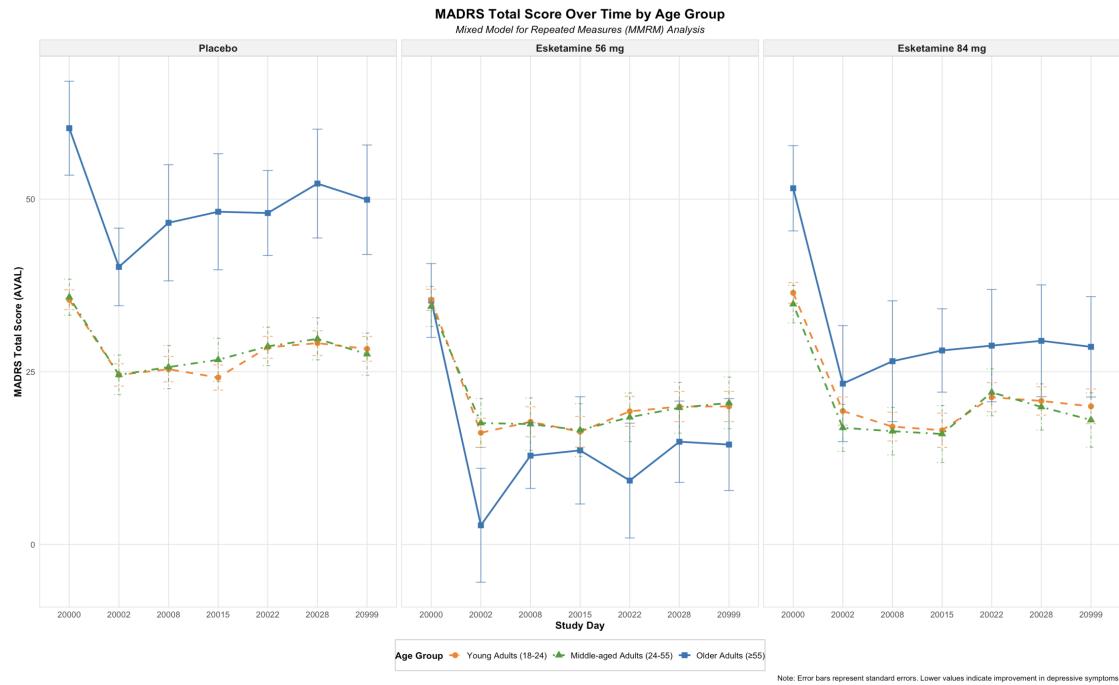


Fig. 10

364 Age subgroup analysis revealed differential therapeutic effects of Esketamine across different age groups.
 365 In the placebo group, elderly patients (≥ 55 years) had the highest baseline MADRS scores (approximately
 366 57), which remained relatively high after treatment (about 50); whereas the 18-24 year and 24-55 year age
 367 groups showed similar final scores of about 26. The Esketamine 56mg group demonstrated the most notable
 368 age-related differences: elderly patients experienced a rapid initial drop in scores from about 36 to about 2,
 369 stabilizing around 15, indicating a potential special therapeutic effect for this group. The 84mg group showed
 370 consistent therapeutic responses across all age groups: both the 18-24 year and 24-55 year age groups saw
 371 scores drop to about 18, while the elderly group experienced a reduction from the highest baseline (about 51)
 372 to about 26. These results suggest that Esketamine, particularly the 56mg dose, may be an optimal treatment
 373 option for elderly patients with depression.

374 **4.4.6 Summary**

375 Our study concludes that Esketamine holds significant potential for treating depression, with notable
 376 differential effects across subgroups. Firstly, the inclusion of gender in the model did not significantly alter
 377 the therapeutic outcomes, suggesting that Esketamine's effectiveness is relatively consistent across genders.

378 Secondly, patients with severe depression exhibited substantial improvement with Esketamine treatment,
379 highlighting its value for severe or treatment-resistant cases. Lastly, age also emerged as a critical factor, with
380 elderly patients showing a particularly strong initial response to the 56mg dose. These findings underscore the
381 importance of considering these factors in optimizing treatment strategies.

382 5 Discussions

383 Dose-Response Relationship Analysis

384 Our study results indicate that Esketamine exhibits significant antidepressant effects at both 56mg and
385 84mg dosages, yet the relationship between dosage and effect is not perfectly linear. Specifically, most patient
386 subgroups achieved notable clinical improvement at the 56mg dose, and increasing the dosage to 84mg did
387 not yield a proportional increase in benefits. This finding holds significant implications for clinical practice,
388 suggesting that treatment should prioritize starting at the lower effective dose, especially for certain populations
389 who may be more sensitive to medication, such as the elderly. Additionally, we observed that patients with
390 severe depression might benefit more from slightly higher doses, indicating that clinicians should adjust the
391 dosage based on the severity of depression to balance optimal treatment efficacy and safety.

392 Clinical Significance of Depression Severity Differences

393 The significant response of patients with severe depression to Esketamine in this study is of considerable
394 clinical importance. Traditionally, patients with severe depression have poorer treatment outcomes, lower
395 remission rates, and longer times to remission. Esketamine's ability to rapidly and significantly improve
396 symptoms in this group could potentially shorten the duration of patient suffering and reduce the risk of
397 suicide. Moreover, although the final MADRS scores of patients with severe depression were slightly higher
398 than those with moderate depression, the relative improvement was greater, suggesting that Esketamine
399 may specifically address neurotransmitter imbalances associated with severe depression by modulating the
400 glutamatergic system. Therefore, clinicians should consider Esketamine as an early intervention option for
401 patients with severe depression, particularly those who have not responded well to traditional treatments.

402 Age-Related Differences in Treatment Response and Mechanism Exploration The unique response pattern
403 of elderly patients to the 56mg dose of Esketamine is worthy of further investigation. Possible mechanisms
404 include: (1) distinctive changes in the glutamatergic system of elderly patients, making them more sensitive
405 to NMDA receptor antagonism; (2) elevated levels of chronic inflammation in the elderly, which Esketamine

406 may counteract due to its potential anti-inflammatory effects; (3) the presence of neurodegenerative changes
407 often accompanying depression in the elderly, where Esketamine's neuroprotective and neurogenic promoting
408 effects may be more pronounced. Meanwhile, the consistent response of young and middle-aged patients
409 to both doses also provides a reference for clinical medication use, indicating that the 56mg dose may be
410 sufficient to achieve optimal efficacy and avoid unnecessary side effects associated with higher doses.

411 This study, through rigorous MMRM analysis, confirms the significant efficacy of Esketamine across
412 different depression severity and age groups. Notably, the 56mg dose of Esketamine shows particularly
413 significant effects in elderly patients aged 55 and above, offering a new treatment option for this traditionally
414 challenging demographic. Its effectiveness in both moderate and severe depression patients demonstrates its
415 broad applicability. These findings provide clinicians with important evidence-based support for adopting
416 personalized treatment strategies based on patient characteristics. Future research should focus on Esketamine's
417 long-term efficacy, maintenance treatment strategies, and combined applications with other antidepressant
418 treatments to further optimize treatment plans. As shown in the study by Daly et al. (2019), Esketamine has
419 demonstrated promising long-term efficacy and safety in clinical trials, further supporting its potential as a
420 valuable treatment option. In summary, Esketamine, as an innovative treatment option, shows potential to
421 improve clinical outcomes for various depression patients, offering new hope for the management of depression.

422 Difference of The Effectiveness Through Sites

423 - Limitations

424 This study has limitations, including a limited sample size and relatively short observation period. Future
425 studies should expand the sample size and extend the follow-up duration to assess the long-term efficacy
426 and safety of Esketamine. Additionally, this study did not delve into the differential mechanisms of action
427 of Esketamine; subsequent research should incorporate biomarkers and neuroimaging techniques to further
428 elucidate its differentiated mechanisms of action across various populations.

429 **6 Conclusion**

430 This study systematically evaluated the efficacy and dynamic response characteristics of esketamine nasal
431 spray monotherapy in adults with treatment-resistant depression using a Mixed-Effect Model for Repeated
432 Measures (MMRM), yielding the following key conclusions:

433 **Significant and Sustained Efficacy of Esketamine**

434 Both esketamine 56 mg and 84 mg dosage groups demonstrated rapid antidepressant effects as early as
435 Day 2 (significant reduction in MADRS scores), with sustained efficacy through the study endpoint (Day 28
436 and endpoint timepoints). Compared to the placebo group, the estimated marginal mean differences for both
437 dosage groups exceeded the clinically meaningful threshold (≥ 5 points), and confidence intervals showed no
438 overlap with placebo ($p < 0.0001$), confirming both statistical significance and clinical superiority.

439 **Dose-Response Relationship**

440 Although both 56 mg and 84 mg groups were significantly superior to placebo, the dose-effect relationship
441 exhibited nonlinear characteristics. The 56 mg group achieved maximal efficacy at Day 28 (mean difference:
442 -9.36 points), while the 84 mg group showed slightly reduced effects at some timepoints. These findings
443 suggest that 56 mg may serve as the optimal initial dose for most patients, balancing efficacy with potential
444 side effects, particularly in elderly populations.

445 **Heterogeneity in Subgroup Efficacy**

- 446 • Age Differences: The 56 mg dose demonstrated pronounced efficacy in elderly patients (≥ 55 years), with a
447 50% reduction in MADRS scores from baseline to endpoint.
- 448 • Disease Severity: Patients with severe depression (baseline MADRS ≥ 40) exhibited greater absolute
449 improvements (> 15 -point reduction), supporting esketamine as a rapid intervention for refractory, severe
450 depression.
- 451 • Gender Consistency: No significant differences in efficacy were observed between male and female patients
452 ($p > 0.05$), indicating broad applicability.

453 **Robustness of Model and Methodology**

454 The MMRM model ensured result reliability by adjusting for baseline scores, center effects, and within-
455 subject correlations. Residual diagnostic plots validated assumptions of homoscedasticity, linearity, and
456 approximate normality, confirming the validity of statistical inferences.

457 **Clinical and Practical Implications**

458 Esketamine's rapid onset (within 48 hours) and sustained efficacy address limitations of conventional
459 antidepressants, particularly for patients requiring urgent symptom relief. Integrating subgroup findings, we
460 recommend individualized dosing strategies based on age and depression severity, prioritizing 56 mg as the
461 initial therapeutic dose.

462 **Limitations and Future Directions** This study was limited by its moderate sample size and exclusive focus
463 on double-blind phase data. Further research is warranted to evaluate esketamine's long-term safety and
464 maintenance treatment strategies.

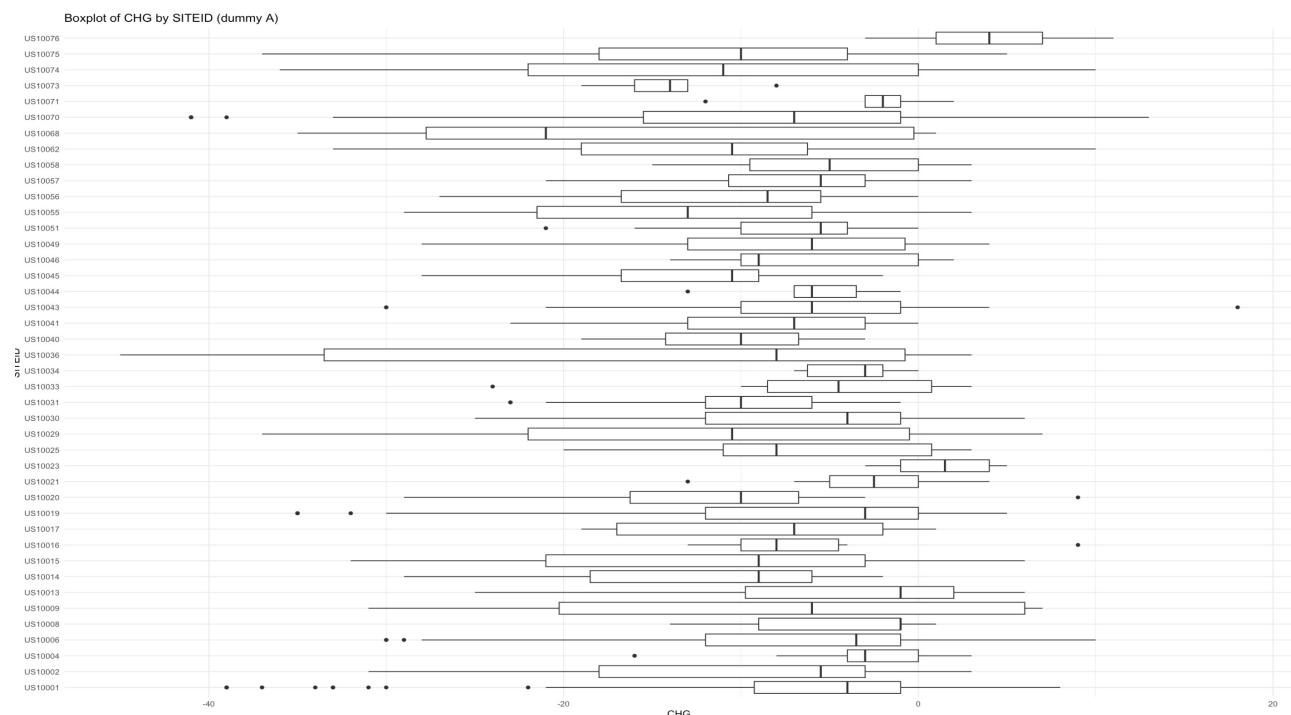
465 In conclusion, esketamine nasal spray represents a novel, high-efficacy therapeutic option for treatment-
466 resistant depression. Its rapid, durable, and broadly applicable efficacy profile has the potential to transform
467 clinical practice, improve patient outcomes, and reduce disease burden.

468 7 Reference

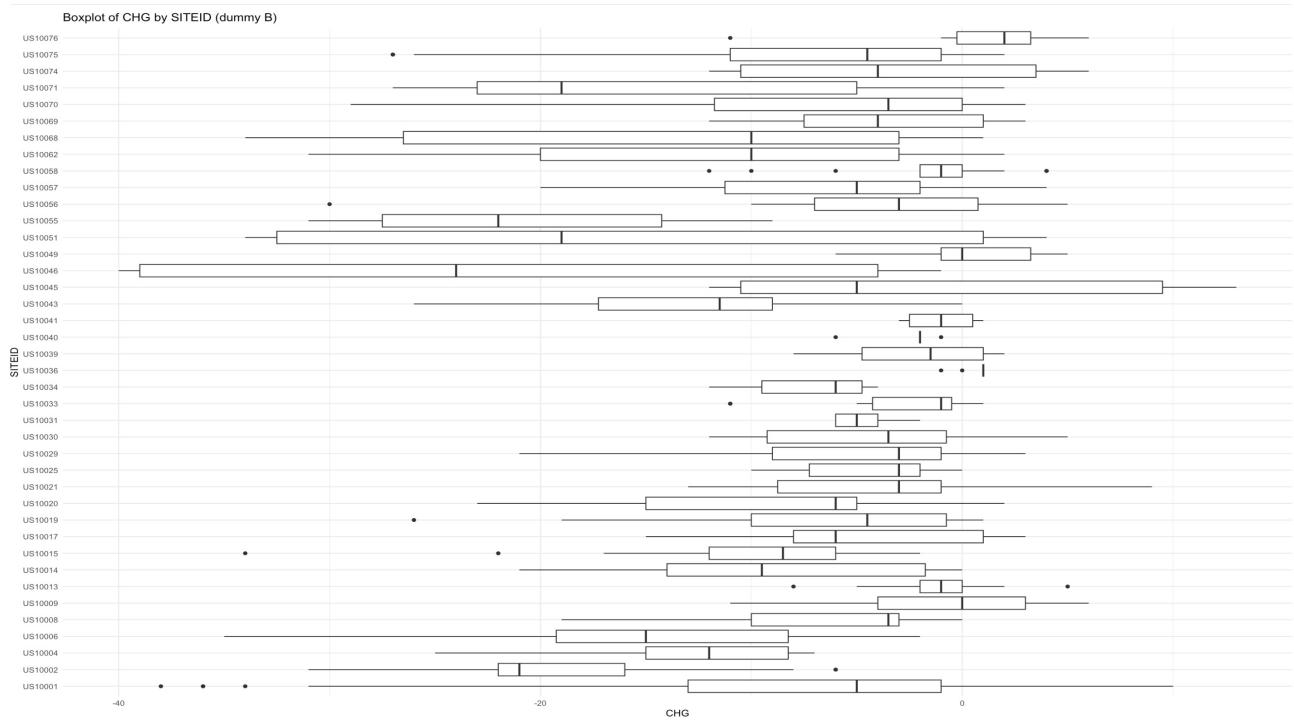
469 Cipriani, A., Furukawa, T. A., Salanti, G., et al. (2018). Comparative efficacy and acceptability of 21
470 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and
471 network meta-analysis. *The Lancet*, 391(10128), 1357-1366.

472 Daly, E. J., Singh, J. B., Fedgchin, M., Cooper, K., Lim, P., Shelton, R. C., Thase, M. E., Winokur, A.,
473 Van Nueten, L., Manji, H., & Drevets, W. C. (2019). Efficacy and safety of intranasal esketamine adjunctive to
474 oral antidepressant therapy in treatment-resistant depression: A randomized clinical trial. *JAMA Psychiatry*,
475 76(9), 893–903. Available at: <https://doi.org/10.1001/jamapsychiatry.2019.1189>

476 Duman, R. S., Aghajanian, G. K., Sanacora, G., & Krystal, J. H. (2016). Synaptic plasticity and depression:
477 New insights from stress and rapid-acting antidepressants. *American Journal of Psychiatry*, 173(6), 559–572.
478 Available at: <https://doi.org/10.1176/appi.ajp.2016.16010037>


479 Hengartner, M. P., Jakobsen, J. C., Sørensen, A., & Plöderl, M. (2020). Efficacy of new-generation
480 antidepressants assessed with the Montgomery-Asberg Depression Rating Scale, the gold standard clinician
481 rating scale: A meta-analysis of randomised placebo-controlled trials. *PloS one*, 15(2), e0229381. Available
482 at: <https://doi.org/10.1371/journal.pone.0229381>

483 Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. *Biometrics*, 38(4),
484 963–974.


485 Namiot ED, Smirnovová D, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. Depression clinical trials
486 worldwide: a systematic analysis of the ICTRP and comparison with ClinicalTrials.gov. *Transl Psychiatry*.
487 2024 Jul 31;14(1):315. doi: 10.1038/s41398-024-03031-6. PMID: 39085220; PMCID: PMC11291508.

488 Sabanes Bove, D., Li, L., Dedic, J., Kelkhoff, D., Kunzmann, K., Lang, B., Stock, C., Wang, Y., James,
 489 D., Sidi, J., Leibovitz, D., & Sjoberg, D. (2025). *mmrm*: Mixed Models for Repeated Measures. R package
 490 version 0.3.14.9002. Available at: <https://openpharma.github.io/mmrm/> (Accessed: 7 April 2025).
 491
 492 Salahudeen, M. S., Wright, C. M., & Peterson, G. M. (2020). Esketamine: new hope for the treat-
 493 ment of treatment-resistant depression? A narrative review. *Therapeutic advances in drug safety*, 11,
 494 2042098620937899. <https://doi.org/10.1177/2042098620937899>
 495
 496 World Health Organization. (2021). Depression fact sheet. World Health Organization. Available at:
 497 <https://www.who.int/news-room/fact-sheets/detail/depression>
 498 Zimmerman, M., Chelminski, I., & Posternak, M. (2004). A review of studies of the Montgomery–Asberg
 499 Depression Rating Scale in controls: implications for the definition of remission in treatment studies of
 depression. *International Clinical Psychopharmacology*, 19(1), 1–7.

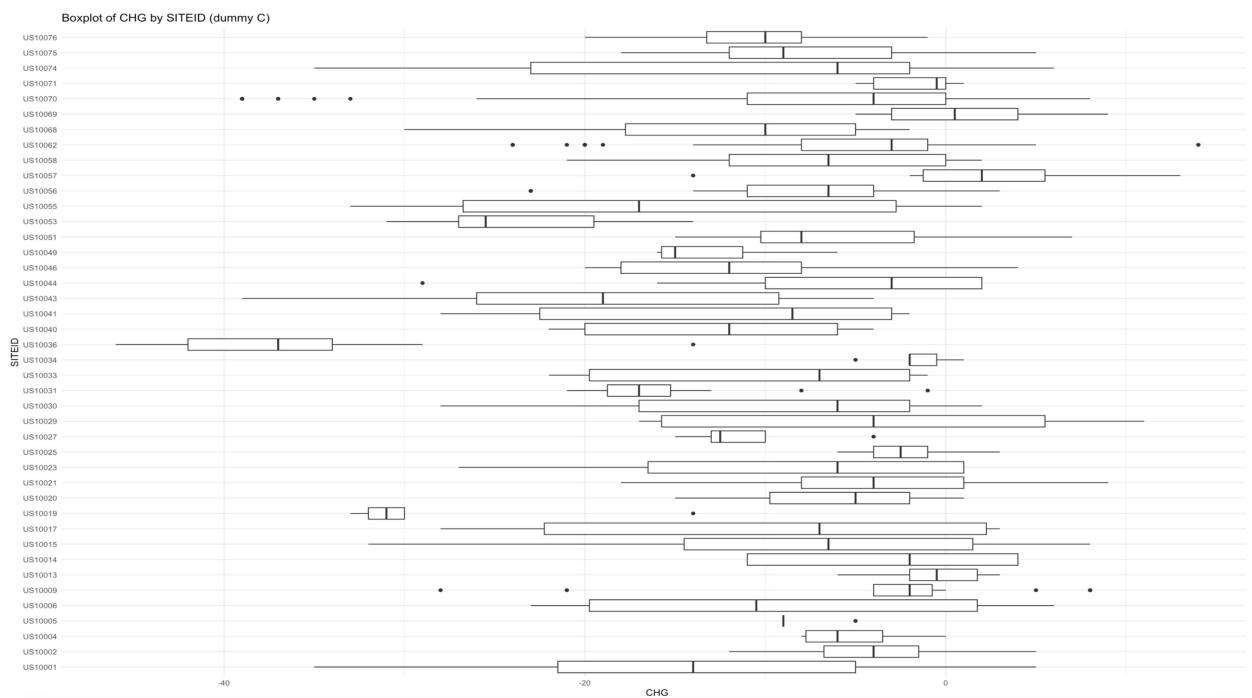

499 Appendix A

Fig. A1: MADRS Score in The Treatment of Placebo in Different Sites

Fig. A2: MADRS Score in The Treatment of Esketamine (56 mg) in Different Sites

Fig. A3: MADRS Score in The Treatment of Esketamine (84 mg) in Different Sites

500 Codes are provided here:

501 <https://hzzzzz411.github.io/MMRM-Analysis/>

Variable	CI	p_value
(Intercept)	1.806 (1.07, 2.542)	<0.001
TRT01ADummy B	0.002 (-0.079, 0.082)	0.967
TRT01ADummy C	0.048 (-0.034, 0.13)	0.251
SITEIDUS10002	0.077 (-0.168, 0.321)	0.538
SITEIDUS10004	-0.221 (-0.558, 0.116)	0.2
SITEIDUS10005	0.238 (-0.471, 0.948)	0.511
SITEIDUS10006	-0.143 (-0.385, 0.1)	0.251
SITEIDUS10008	-0.555 (-0.926, -0.184)	0.004
SITEIDUS10009	-0.109 (-0.372, 0.155)	0.419
SITEIDUS10013	0.099 (-0.138, 0.335)	0.414
SITEIDUS10014	0.12 (-0.145, 0.385)	0.376
SITEIDUS10015	0.154 (-0.083, 0.391)	0.204
SITEIDUS10016	-0.281 (-0.794, 0.231)	0.283
SITEIDUS10017	-0.127 (-0.438, 0.184)	0.425
SITEIDUS10019	-0.076 (-0.34, 0.188)	0.572
SITEIDUS10020	-0.359 (-0.633, -0.086)	0.01
SITEIDUS10021	-0.157 (-0.386, 0.072)	0.18
SITEIDUS10023	-0.623 (-1.13, -0.115)	0.017
SITEIDUS10025	0.03 (-0.281, 0.341)	0.849
SITEIDUS10027	-0.178 (-0.688, 0.332)	0.494
SITEIDUS10029	0.036 (-0.177, 0.249)	0.741
SITEIDUS10030	-0.062 (-0.261, 0.137)	0.544
SITEIDUS10031	-0.054 (-0.351, 0.243)	0.722
SITEIDUS10033	0.003 (-0.302, 0.308)	0.984
SITEIDUS10034	0.039 (-0.297, 0.375)	0.821
SITEIDUS10036	0.301 (0.055, 0.548)	0.017
SITEIDUS10039	0.569 (-0.138, 1.277)	0.115
SITEIDUS10040	0.063 (-0.311, 0.438)	0.74
SITEIDUS10041	0.13 (-0.179, 0.439)	0.41
SITEIDUS10043	-0.174 (-0.402, 0.055)	0.137
SITEIDUS10044	-0.084 (-0.507, 0.34)	0.699
SITEIDUS10045	-0.014 (-0.384, 0.356)	0.94
SITEIDUS10046	0.183 (-0.129, 0.495)	0.25
SITEIDUS10049	0.111 (-0.199, 0.421)	0.482
SITEIDUS10051	-0.07 (-0.295, 0.154)	0.538
SITEIDUS10053	0.393 (-0.363, 1.148)	0.309
SITEIDUS10055	0.013 (-0.228, 0.253)	0.917
SITEIDUS10056	-0.386 (-0.641, -0.131)	0.003
SITEIDUS10057	0.068 (-0.2, 0.336)	0.617
SITEIDUS10058	-0.129 (-0.366, 0.108)	0.287
SITEIDUS10062	-0.007 (-0.181, 0.168)	0.941
SITEIDUS10068	0.069 (-0.139, 0.278)	0.514
SITEIDUS10069	0.26 (-0.163, 0.683)	0.228
SITEIDUS10070	-0.094 (-0.265, 0.078)	0.286
SITEIDUS10071	-0.28 (-0.595, 0.034)	0.082
SITEIDUS10073	-0.088 (-0.796, 0.62)	0.808
SITEIDUS10074	-0.125 (-0.344, 0.094)	0.263
SITEIDUS10075	-0.003 (-0.177, 0.171)	0.972
SITEIDUS10076	-0.361 (-0.653, -0.07)	0.016
RACEASIAN	-0.284 (-1.031, 0.464)	0.458
RACEBLACK OR AFRICAN AMERICAN	-0.567 (-1.299, 0.165)	0.13
RACEMULTIPLE	-0.648 (-1.418, 0.122)	0.1
RACENATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER	-0.437 (-1.319, 0.445)	0.332
RACENOT REPORTED	-0.271 (-1.084, 0.542)	0.514
RACEUNKNOWN	-0.484 (-1.506, 0.538)	0.353
RACEWHITE	-0.463 (-1.184, 0.258)	0.209
AGE	0.022 (-0.014, 0.057)	0.233

Table A1: Coefficients with 95% Confidence Intervals and p-values

502 **Acknowledgements.** We extend our heartfelt thanks to Dr. Mu He for his invaluable guidance and for
 503 facilitating our communication with the Tigermed team. His support has been instrumental in providing us
 504 with the opportunity to learn and engage in meaningful discussions. Additionally, we are deeply appreciative

Variable	CI	p_value
base_situation10-19	-2.34 (-2.708, -1.972)	<0.001
base_situation20-39	-0.857 (-0.937, -0.777)	<0.001
TRT01ADummy A:AVISITN20002	-1.006 (-1.122, -0.89)	<0.001
TRT01ADummy B:AVISITN20002	-0.935 (-1.097, -0.772)	<0.001
TRT01ADummy C:AVISITN20002	-0.981 (-1.145, -0.817)	<0.001
TRT01ADummy A:AVISITN20008	-0.651 (-0.761, -0.541)	<0.001
TRT01ADummy B:AVISITN20008	-0.57 (-0.723, -0.416)	<0.001
TRT01ADummy C:AVISITN20008	-0.717 (-0.872, -0.562)	<0.001
TRT01ADummy A:AVISITN20015	-0.695 (-0.81, -0.579)	<0.001
TRT01ADummy B:AVISITN20015	-0.584 (-0.745, -0.422)	<0.001
TRT01ADummy C:AVISITN20015	-0.697 (-0.86, -0.535)	<0.001
TRT01ADummy A:AVISITN20022	-0.822 (-0.95, -0.695)	<0.001
TRT01ADummy B:AVISITN20022	-0.743 (-0.921, -0.565)	<0.001
TRT01ADummy C:AVISITN20022	-0.839 (-1.018, -0.659)	<0.001
TRT01ADummy A:AVISITN20028	-0.843 (-0.968, -0.717)	<0.001
TRT01ADummy B:AVISITN20028	-0.695 (-0.871, -0.519)	<0.001
TRT01ADummy C:AVISITN20028	-0.843 (-1.02, -0.666)	<0.001
TRT01ADummy A:AVISITN20999	-0.848 (-0.973, -0.722)	<0.001
TRT01ADummy B:AVISITN20999	-0.703 (-0.879, -0.527)	<0.001
TRT01ADummy C:AVISITN20999	-0.851 (-1.027, -0.674)	<0.001

Table A2: Continued Table 1: Coefficients with 95% Confidence Intervals and p-values

505 of the consistent and well-processed data provided by Tigermed, which has been crucial for our analysis.

506 Besides, thanks to our hard work and enthusiasm about biomedical statistics.