Some Perspectives to Penalized Regression Model

(Part of 2024 SURF)

Yu Lu (XJTLU Bsc Applied Statistics (Biomedical statistics))

Yu Lu (XJTLU Bsc Applied Statistics (BiomeSome Perspectives to Penalized Regression M



OLS / MLE Solution to LR with issues

We have learned the equivalence of Ordinary Least Squares (OLS) and
Maximum Likelihood Estimation (MLE) in the context of linear regression
assuming the error term follows a Gaussian distribution but with
limitations as below:

Even if the OLS or MLE solution is optimal in terms of minimizing the
error, it may lead to overfitting, especially when the number of features is
large relative to the number of observations. This can result in high
variance and poor generalization to new data.
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How to handle the issues?

2
N p

LASSO:  Argming E (yi Bjxi]) + A E 18|, where A >0
J j J

i=1

=

>
J
N P 2 P
Ridge: Argming Z (yi — Z ﬁjztij) + A Z BJQ-, where A > 0
=1 j j

v

@ OLS perspective thinking: This shrinkage method not only achieves
the objective of making the error to be smallest like OLS, but also
prevents overfitting by penalizing large coefficients.

@ MLE perspective thinking: Compared with MLE, this method could
be regarded as a Bayesian estimation that can avoid overfitting by
introducing the prior distribution P(f3), especially when the data
volume is small, the prior information can play a regularization role.
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Why does the terms of the regularization look like this?

Just like what we have learned about the relationship between the OLS
and MLE and get the idea of why the error term is the square shape, now

we are going to use the perspective of Bayesian to understand the
penalized terms
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Brief Intro to Bayesian Method

Bayesian Method

Bayesian statistics is a statistical paradigm that interprets probability as a
measure of belief or certainty rather than a frequency. It combines prior
beliefs with evidence to update the probability of a hypothesis.

@ Prior Distribution: Represents our beliefs about the parameters
before observing the data.

o Likelihood: The probability of the observed data given the
parameters.

o Posterior Distribution: The updated beliefs about the parameters
after observing the data, calculated using Bayes' theorem.

o Bayes’ Theorem:

P(D|B)P(B)

P(8ID) = =55,
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Choose Prior Distribution P(f3)

We insist that 5 should be more likely to be small also with small variances
(very near to 0). This means we should pick a distribution that has a peak
around zero and decays quickly as we move away from zero.

@ Prior Distribution: In the context of penalized regression, we choose
a prior distribution for the coefficients 3 that reflects our beliefs
about their values. Common choices include:

e Laplace Prior: Assumes coefficients follow a Laplace distribution,
leading to L' regularization (Lasso Regression).

e Gaussian Prior: Assumes coefficients are normally distributed around
zero, which leads to L? regularization (Ridge Regression).

This also means it would take extreame evidence with the data that we see

in order to accept very large and very high variances beta because of the
prior.
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Choose Prior Distribution P(3)

7
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Maximize the posterior probability to get the point

estimation of 3 — Ridge

P(Bly) < P(y|B)- P(B)

1 AT 2
Pl8)= exp{f(y oo }

And for the prior part, we assume (3 follows a Gaussian distribution, 3 ~ N(0, 0'/2),

1 2
PB) = 270’ exp{—2§,2}

Thus,

B =arg mgx log P(B|Y)
= argmgx log P(Y'|B)P(B)

N
= argmax log H P(y;|B)P(B)
=1

N
=arg mgx Z log[P(y;|8)P(B)]
1=1

i=
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Maximize the posterior probability to get the point

estimation of # — Ridge (continue)

N 1 (y—BTx)? 1 B2
~armgx ) [“’g (ma e"P{* 207 M AT
N 1 (yi—BTz)?  B°
:argmgxg:1 {log(zﬂ_a/a)* 202 T 2572
N 2 2
) (yi — B  =;) B
:argménizzl [T 20./2}
=argmin(Y — Xﬁ)T(LINXY* Xp)+ LB2
B 202 /2

((Weighted least squares with the weight ﬁIN and the penalty term U%ﬁQ))

If we let X = ﬁ, then the loss function is L(3) = Zﬁ\il(BTmi — ;)2 + ABT B, which is equivalent to the minimization

of the regularized least squares in L2,
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Remark of the Ridge Regression

Ridge regression solution is also the posterior mean, this is because the
likelihood of the data given the parameters is Gaussian, and the prior is
also Gaussian, which results in a posterior that is also Gaussian by the
property of the conjugate prior of the Gaussian distribution, i.e.

Ridge Regression Posterior Mean
NEED to ADD!
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Maximize the posterior probability to get the point

estimation of 3 — Lasso

Now the prior part is assumed to be a Laplace distribution, 3 ~ Laplace(0, b), i.e., P(8) = % exp (7@)

o 1 (y—BTz) ]
argmgxiiz1 [log <\/ﬂc’5 exp {7 202 —log2b — >

N T 2
1 (y; =B =;)* |8
= E 1 — _ P
argmgxiZI [Og(\/2ﬂ052b> 202 b

T 2
= argmm Z [ﬁ + Lf‘:|

~argmin(Y = XA)T (525 In)(Y = X6) + £ 15

If we let A = %, then the loss function is L(3) = Eﬁ\il(BTmi — ;)2 + A|B|, which is equivalent to the minimization of the

regularized least squares in Ll
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Further check A and corresponding term in the posterior
likelihood—How the penalized terms are derived from the
Bayesian perspective

A= ﬁ i.e. Larger \ with less 0’2 means more regularization

corresponding to smaller variance of the prior distribution (normal)

A= % i.e. Larger \ with less b means more regularization corresponding to
smaller variance of the prior distribution (laplace)

.
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How to choose the \7?

@ Cross-Validation: A common method to choose the regularization
parameter A is through cross-validation. This involves splitting the
data into training and validation sets, fitting the model with different
values of A, and selecting the one that minimizes the prediction error
on the validation set.
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Lagrange Multipliers Perspective of Penalized Models

Lagrange Multipliers Perspective

Lagrange multipliers provide a way to incorporate constraints into optimization
problems. In the context of penalized regression, we can view the regularization
term as a constraint on the size of the coefficients.

The formula could be expressed as:

min { [y — X513 + A1)

where |3]| is the LP norm of the coefficients, which serves as a penalty term.

The gradient of the objective function of Ridge with respect to 3 is given by:

VJ(B) = —2X"(y— XB) + VBl

(see matrix form (Go to Matrix Form) below for more details)

This should be set to zero to find the optimal 3, which means the gradient of the loss function (the first term) is equal to the
gradient of the penalty term (the second term) scaled by .
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Geometric Interpretation of Penalized Models in Lagrange
Multipliers Perspective
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Geometric Interpretation of LASSO in Lagrange Multipliers

Perspective and Bayesian Perspective

Behavior of classical LASSO and Bayesian Lasso

@ Green elliptical lines: contours of the sum of squared residuals

@ Dark diamond shaped region: Constraint region for classical lasso
penalty

° /3’/3550 : point where the contours of sum of squared residuals meet the
constraint region

° BBayes . (posterior median estimate) shrunken towards zero compared
to the OLS estimate e —————————
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Understanding of A

Lagrange Multipliers help explain how A balances fitting the data well:

Bigger A makes the ellipse (representing the constraint region in the
parameter space in WLS, if it satisfies the homoscedasticity, it would be a
circle) smaller. In this case, the gradient of 5 becomes steeper with a
larger A, which means that the optimization algorithm will grow the
penalty of 3 to stay within the shrinking feasible region. This helps reduce
variance and prevent overfitting, but overly large A can cause underfitting.
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Matrix Form of Penalized Regression Models

Ridge Regressio

Objective Function:

min {1y — XI5 + I 613}

Matrix Form Derivation:
Expand the loss term:

ly—x8l3 =(v—XB)T(y—xB8)=yTy—2yTxB+BTXTXpB.
e Add the L2 penalty:
J(B) =yTy—2yTxB+BTXTXB+A8T5.
e Compute the gradient:

oJ

58 vJB) =—-2XT(y—XB)+AV|B|5 =—-2XTy+2XTXB+2X8.

0 Set gradient to zero:
—XTy+ XTXB+2AB=0 = (XTX+AD)B=XTy.

e Solve for 3:
Bridge = (XTX + A1) 1 xTy

Why Regularization Helps: The term A I ensures XTX+AIis always invertible (since A > 0 adds positive values to the
diagonal, guaranteeing full rank). This avoids singularity issues in XT X when features are collinear.
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Matrix Form of Penalized Regression Models

Lasso R

Formula: ~
Plasso = argmin {ly—xBI3 + Al8l1 }

Objective Function:

P
min{ |y — XBI3+x > 1851
B =i
Matrix Form Derivation: Lasso lacks a closed-form solution due to the non-differentiable L1 norm. Instead, we use the
subgradient optimality condition:
Subgradient equation:
—2X7T(y— XB)+ X -sign(B) =0,
where sign(3) is defined component-wise:
Key Insight:
For Bj # 0, the solution balances data fit and shrinkage.
@ For Bj = 0, the condition requires:

\zij(y - XpB)|<A.

This induces sparsity (exact zeros in 3), which Ridge cannot achieve.
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Differences between Lasso and Ridge

@ Lasso could realize variable selection by shrinking some coefficients to
exactly zero, while Ridge regression shrinks all coefficients but does
not set any to zero.
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R code Example of Penalized Linear Regression Models

# Install and load necessary packages
# install.packages("glmnet")

# install.packages("ISLR2")
library(glmnet)

library (ISLR2)

# Load the Hitters dataset
data(Hitters)

# Remove missing values
Hitters <- na.omit(Hitters)

# Define the predictor matrix and response variable
# exclude the intercept term

X <- model.matrix(Salary ~ ., Hitters)[, -1]

y <- Hitters$Salary
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R code Example of Penalized Linear Regression Models

(continue)

# Split the data into training and test sets
set.seed (1)

train <- sample(l:nrow(x), nrow(x) / 2)

test <- (-train)

y.test <- yl[test]

# Fit the Lasso model on the training data

grid <- 107seq(10, -2, length = 100)

# LASSO-LR

lasso.mod <- glmnet(x[train, ], y[train], alpha = 1,
lambda = grid, family = 'gaussian')

# Plot the Lasso model to visualize coefficient paths

plot(lasso.mod)
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R code Example of Penalized Linear Regression Models

(continue)

50 100

Coefficients
-50 0
I

-150

0 100 200 300

L1 Norm
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R code Example of Penalized Linear Regression Models

(continue)

# Perform cross-validation to find the optimal lambda
set.seed(1)

cv.out <- cv.glmnet(x[train, ], y[train], alpha = 1)
plot(cv.out)
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R code Example of Penalized Linear Regression Models

(continue)

19 19 19 19 19 19 19 17 16 18 17 15 14 13 12 11 10 11 10 8 8 7 6 3 3 3 1

180000
.

Mean-Squared Error
140000
!

80000 100000
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R code Example of Penalized Linear Regression Models

(continue)

bestlam <- cv.out$lambda.min

# Make predictions on the test set using the optimal lambda
lasso.pred <- predict(lasso.mod, s = bestlam, newx = x[test, ])
test.mse <- mean((lasso.pred - y.test) 2)

print(paste("Test MSE with Lasso and optimal lambda:", test.mse))
# Fit the Lasso model on the full dataset using the optimal lambda
lasso.full <- glmnet(x, y, alpha = 1,lambda = bestlam)

lasso.coef <- coef(lasso.full)

print("Lasso coefficients on the full dataset:")

print (lasso.coef)

lasso.coef [lasso.coef != 0]

# print the name of the variables that are not zero
print("Variables with non-zero coefficients:")

names (lasso.coef) [lasso.coef != 0]
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R code Example of Penalized Linear Regression Models

(continue)

[1] "Test MSE with Lasso and optimal lambda: 143673.618543046
[1] "Lasso coefficients on the full dataset:"

20 x 1 sparse Matrix of class "dgCMatrix"
s0

(Intercept)  -3.42073206

AtBat .

Hits 2.02965136

HmRun

Runs

RBI .

Walks 2.24850782

Years

CAtBat

CHits
R 04004234
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R code example of Penalized Linear Regression Models

(continue)

[,1] [,2] [,3]
[1,]1 -3.42073206 2.0296514 2.2485078
[2,] 0.04994886 0.2221244 0.4018303
[3,] 20.83775664 -116.3901920 0.2376831
[4,] -0.93567863  -3.4207321 2.0296514

Yu Lu (XJTLU Bsc Applied Statistics (BiomeSome Perspectives to Penalized Regression M




R code example of Penalized Linear Regression Models

(continue)

# plot
non_zero_coef <- lasso.coef[lasso.coef[,1] != 0, 1[-1] #
coef_df <- data.frame(

Variable = names(non_zero_coef),

Coefficient = as.numeric(non_zero_coef)

)

# Sort by the absolute value of the coefficient
coef_df <- coef_df [order (abs(coef_df$Coefficient), decreasing = TRUE), ]

library(ggplot2)
ggplot (coef_df, aes(x = reorder(Variable, Coefficient),

y = Coefficient,
£ill = ifelse(Coefficient > 0, "Positive", "Negative"))) +

geom_bar(stat = "identity") +
scale_fill_manual(values = c("Positive" = "dodgerblue", "Negative" = "firebrick")) +
labs(title = "Lasso Regression Coefficients",

subtitle = paste("Optimal lambda =", round(bestlam, 4)),

x = "Predictor Variables",

y = "Coefficient Value",

£ill = "Effect Direction") +

coord_flip() +

theme_minimal() +

theme (legend.position = "top",
plot.title = element_text(face = "bold", size = 14),
axis.text.y = element_text(size = 10))
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R code example of Penalized Linear Regression Models

(continue)

Lasso Regression Coefficients
Optimal lambda = 9.287

Effect Direction . Negative . Positive

LeagueN

Walks

Hits

CRBI

PutOuts

Predictor Variables

CRuns

CHmMRun

Errors

DivisionW
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Actually the penalized model could be applied in many regression models
not only for linear regression, but also for logistic regression, Poisson
regression, Cox regression, etc.

The penalized terms could be added to the loss function of these models
in a similar way.
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R Code of Penalized Cox Regression - Lasso using glmnet

package

Want to minimize

_log ( H exp (Zj=1 «T;j j) )) +AP(B), (1)

1:6;=1 Zi/=y~;/ >Y; eXp ( :CZ/]BJ

J=1

where ¢, is the indicator function for censoring and P () = 5—1 592

corresponds to a ridge penalty, or P(f3) = Z§=1 3| corresponds to a
lasso penalty.

R Code example for LASSO in Cox Regression applied on selecting

important features of pesticide poisoning

Click here to see LASSO code provided by SURF2024 instructed by Dr.He
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https://yutong04.github.io/

Summary

We have seen many perspectives to understand the penalized regression
models, including:

o Bayes
@ Lagrange multipliers

@ matrix form
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Thanks for listening

The greatest truths are the simplest.

Penalized regression models balance the trade-off between fitting the data
well and keeping the model simple.

Everything is connected to each other. Good theory interpretes this

connection interestingly.

Linear Regression: OLS and MLE (Last time)

Penalized regression models: Lagrange multiplier (restriction in the
geometric meaning and also algebra interpretation) and Bayesian
perspective (prior: history knowledge restriction)
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